登录注册
请使用微信扫一扫
关注公众号完成登录
我要投稿
国家“十三五”规划进一步实施最严格的水资源管理制度,要求工业企业尽可能回收和循环使用生产过程产生的废水,作为用水大户的燃煤电厂,其废水的再生回用以及零排放势在必行。目前,我国90%以上燃煤电厂采用石灰石-石膏湿法烟气脱硫技术脱除烟气中的SO2,在运行中产生的脱硫废水因成分复杂、污染物种类多,成为燃煤电厂最难处理的废水之一。
目前,大多数电厂采用“三联箱法”处理脱硫废水,但处理出水含盐量仍然很高,难以回用。因此,脱硫废水的零排放处理得到越来越多的关注。
脱硫废水零排放处理技术一般通过3个过程进行:预处理、膜法浓缩减量和蒸发法回收结晶盐。但该方法投资较大、能耗过高、处理成本高,吨水综合运行费用高达180元。此外,蒸发结晶产生的混盐无法利用,实际运行中甚至出现制盐不达标形成二次污染物的问题。
燃煤电厂循环冷却系统用水量巨大,约占整个燃煤电厂的80%~90%,而采用非常规水源作为循环冷却系统补水是工业节水的重要途径。
近年来,我国海水循环冷却技术的发展日趋成熟,相比于淡水循环系统,其放宽了对系统补水的水质要求。通过适当的处理工艺对达标排放的脱硫废水进一步进行再生处理,使其满足海水循环冷却系统补水的水质要求,则可以实现脱硫废水的再生回用。
同时,海水循环系统排放的浓缩海水是海水制盐的优良原料,而脱硫废水处理后得到的再生水中含有的Na+、Ca2+、Mg2+、Cl-和SO42-均为海水的组成成分,理论上不会对晒盐过程产生影响,不仅有利于海水化学资源的有效利用,还可以真正实现电厂污水的零排放。
因此,本研究针对海水循环冷却系统特征,开展了脱硫废水经再生处理后回用于海水循环冷却系统的试验研究,以期为电厂脱硫废水的再生回用提供新思路和新途径。
01 材料与方法
1.1 水质检测方法及水质稳定性评价
参照《火电厂石灰石-石膏湿式脱硫废水水质控制指标》(DL/T 997—2006)和《海水循环冷却水处理设计规范》(GB/T 23248—2009),制定相关水质检测指标,并选择相应的检测方法对实地采集的海水和再生处理后的脱硫废水进行水质检测。
其中,常规水质指标(浊度、盐度、pH、COD、氯化物等)参照《海洋监测规范第4部分:海水分析》(GB 17378.4—2007)进行测定,结垢相关指标(甲基橙碱度、Ca2+、Mg2+等)采用滴定法进行测定,金属指标采用分光光度法进行测定。根据检测的水质指标,分别采用Langelier指数(LSI)、Ryznar指数(RSI)、Puckorius指数(PSI)、硫酸钙结垢指数等进行水样的腐蚀、结垢倾向评价。
1.2 脱硫废水的再生回用工艺
以北方T市某电厂处理后可达标排放的脱硫废水为原水,其水质满足《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T 997—2006)及《污水综合排放标准》(GB 8978—1996)中一级排放标准。为了使其满足海水循环冷却系统的补水要求,对其进行再生处理。脱硫废水的再生回用工艺流程如图 1所示。
1.3 循环水水质稳定性控制试验
1.3.1 结垢试验
参照《水处理剂阻垢性能的测定碳酸钙沉积法》(GB/T 16632—2008)进行静态阻垢试验。
试验开始时,将1 L水样倒入烧杯中,空白组不加阻垢剂,试验组加入定量的阻垢剂,然后置于80 ℃恒温水浴锅中敞口加热蒸发。待体积浓缩至500 mL时,用玻璃盖片盖住杯口保持液位恒定,持续加热24 h。取出烧杯,降至室温后进行水质检测。
试验结束后,采用定性滤纸过滤采集垢样,经离心后,于105 ℃烘至恒重。于干燥器保存24 h后,选取有代表性的垢样,采用扫描电子显微镜(Hitachi,S4800)观察其微观形貌。剩余的垢样通过研钵研碎烘干后,分别采用X射线荧光光谱仪(Axios,mAX)和X射线衍射仪(Buker,D8 advance)对垢样的元素组成和晶体结构进行检测。
1.3.2 腐蚀试验
参照《水处理剂缓蚀性能的测定旋转挂片法》(GB/T 18175—2000)进行旋转挂片试验。
试验采用XYZK-A型自动补液旋转挂片腐蚀试验仪,腐蚀试片(TA1钛材和316L不锈钢)选择Ⅰ型标准试片(50 mm×25 mm×2 mm)。
测试条件:温度(45±1)℃,时间120 h。前48 h将水样由2 L浓缩至1 L,之后通过自动补充蒸馏水使腐蚀介质稳定在1 L,持续试验72 h。
采用高清数码相机对试验后的腐蚀试片进行拍照,用于宏观腐蚀形貌对比,并采用Hirox KH-7700三维视频显微镜对试片表面进行扫描成像,用于微观腐蚀形貌分析。
1.4 循环系统排水制盐试验
1.4.1 蒸发试验
将再生脱硫废水和海水按照特定比例混合,模拟海水循环冷却系统排水,水样体积约为18 L。将其装入直径30 cm、深30 cm的圆筒形玻璃反应器中,放置于实验室内光照充分、通风的位置,使水样自然蒸发。定期检测卤水的pH、波美度、密度等指标,并取样进行离子浓度的分析检测。
待卤水蒸发至25 °Be后,将剩余溶液转移至2 L烧杯中继续蒸发。最后,将蒸发浓缩析出的氯化钠晶体用离心机甩干,然后进行化学成分检测。
1.4.2 分析检测方法
采用pH计测量卤水pH,用波美比重计测量卤水浓度,用密度计测量卤水密度,用EDTA络合滴定法测定卤水中的Ca2+和Mg2+浓度,用分光光度法测定卤水中的SO42-浓度,用原子吸收法测定卤水中的K+和Na+浓度,并参照《工业盐》(GB 5462—2003)对析出的氯化钠晶体进行化学组成成分检测。
02 结果与讨论
2.1 再生脱硫废水的水质分析
2.1.1 水质特征
脱硫废水原水经再生工艺处理后用于海水循环冷却系统补水,其主要通过与海水混合后进入系统。以2×1 000 MW燃煤机组为例,其循环系统补水水量约为6 500 t/h,再生脱硫废水量约为48 t/h,约占总补充水量的0.74%。按照此比例将再生脱硫废水与海水进行掺混,作为海水循环冷却系统补水。处理后脱硫废水及海水水质检测结果见表 1。
由表 1可知,虽然再生处理后的脱硫废水中典型的腐蚀结垢离子(如Ca2+、Mg2+、Cl-和SO42-等)含量依然较高,但与海水相比,Ca2+含量基本相当,而Mg2+、Cl-和SO42-等离子含量则显著低于海水,并且满足GB/T 23248—2009规定的海水循环系统控制要求。因此,经再生处理后的脱硫废水能够用于海水循环冷却系统的补水。
2.1.2 水质稳定性判定
采用常规水质稳定性判断指数分别对海水和掺混水进行结垢和腐蚀倾向评价,结果如表 2所示。
由表 2可知,海水和掺混水均具有结碳酸钙垢倾向,且硫酸钙结垢指数显示出严重的结硫酸钙垢趋势,这主要是海水和再生脱硫废水中高浓度的Ca2+和SO42-导致的。
海水的RSI和PSI均超过6,说明海水偏腐蚀;掺混水的RSI和PSI低于6,说明当再生脱硫废水进入海水循环冷却系统时,会增加系统的结垢风险,需要着重考虑循环系统的结垢控制。
此外,考虑到掺混水中Cl-依然很高(约15 000 mg/L),对于目前海水循环冷却系统普遍采用的316L不锈钢和TA1钛材仍存在点蚀风险,所以,还需要考虑对系统的腐蚀影响。
2.2 循环水水质稳定性控制试验
2.2.1 结垢试验研究
(1)阻垢率对比。
采用海水专用阻垢缓蚀剂(SW203A)进行静态阻垢试验研究,分别以海水和掺混水作为补水。不同药剂投加量下的Ca2+损失率和阻垢率见图 2。
由图 2(a)可知,不加阻垢剂时,海水和掺混水的Ca2+损失率分别为15.62%和11.89%,说明海水和掺混水均存在一定程度的结垢情况,这与水质稳定性判断结果一致。投加阻垢剂后,海水的Ca2+损失率可降低至2.5%以下,掺混水则可降低至1.5%以下,阻垢率均稳定在90%以上,说明海水中掺入少量再生脱硫废水后不会对结垢过程造成明显影响,通过药剂进行阻垢控制能够达到良好的效果。
(2)结垢产物分析。
对结垢产物的SEM表征结果如图 3所示。
海水的结垢产物主要是白色粉末,而掺混水的结垢产物则为黄白色粉末。由图 3可以看出,掺混水的结垢产物晶体尺寸略大于海水结垢产物,但晶体间分布比较松散。
分别采用XRF和XRD对结垢产物的元素组成和晶体结构进行测定,结果见表 3和图 4。
由表 3可知,海水垢样的主要元素组成为Ca和O,而掺混水垢样的主要元素组成为O、Ca和S。由图 4可知,海水的结垢产物主要是CaCO3,而掺混水的结垢产物则主要是CaSO4。
2.2.2 腐蚀试验研究
(1)旋转挂片试验。
分别采用海水和掺混水,对TA1钛材和316L不锈钢进行旋转挂片试验,结果见表 4。
由表 4可知,TA1钛材在2个水样中均未检出腐蚀速率,而316L不锈钢在海水中的腐蚀速率高于标准规定的0.005 0 mm/a,说明在海水中直接使用316L不锈钢存在一定风险。在掺混水中,2种材质均未检出腐蚀速率,说明海水中引入再生脱硫废水后不会增加系统的腐蚀风险。
(2)腐蚀形貌对比。
采用高清数码相机对试验后的腐蚀试片进行拍照,结果如图 5所示。
由图 5可以看出,TA1钛材和316L不锈钢2种材质在海水和掺混水中均具有良好的耐蚀性,试验后表面光滑,保留了金属光泽,没有点蚀出现。
此外,通过3D显微镜对试片表面进行了扫描成像,结果显示,试片表面局部基本平整,最高和最低位置的高程差最大约为10 μm,没有生成点蚀坑。
因此,可以认为海水中引入再生脱硫废水后基本不会对TA1钛材和316L不锈钢的腐蚀造成影响,不需要专门投加缓蚀剂进行腐蚀控制。
2.3 循环系统排水制盐试验
2.3.1 蒸发浓缩析盐规律
分别采用海水和掺混水进行循环系统排水的蒸发浓缩试验,试验过程中CaSO4和NaCl晶体的析出规律如图 6所示。
由图 6可知,随着卤水的蒸发浓缩,卤水中的CaSO4和NaCl先后析出。
其中,海水中CaSO4的析出点约为13.9 °Be,而掺混水中CaSO4的析出点延迟至16.0 °Be,随后两者呈现相似的析出规律,当卤水浓缩至25.0 °Be后,CaSO4的析出率均超过90%。海水中NaCl的析出点为25.8 °Be,掺混水中NaCl的析出点为25.2 °Be,两者几乎一致,说明引入再生脱硫废水后不会对NaCl的析出产生影响。
2.3.2 结晶盐化学组成
对掺混水制得的结晶盐进行化学成分检测,结果见表 5。
由表 5可知,当海水循环冷却系统引入再生脱硫废水后,通过其排放的浓海水制得的结晶盐化学组成符合GB/T 5462—2003中日晒工业盐一级品的标准。
03 结 论
(1)通过对脱硫废水进行再生处理得到的再生水与海水按照比例掺混后,其水质满足海水循环冷却系统补水水质要求。水质稳定性评价结果显示,海水中引入再生脱硫废水后结硫酸钙垢倾向增加,腐蚀倾向较弱。
(2)静态阻垢试验结果显示,海水易结碳酸钙垢,而引入再生脱硫废水后易结硫酸钙垢。采用专用的海水阻垢剂可有效抑制硫酸钙垢的析出,且药剂用量较低,具有良好的技术经济性。
(3)旋转挂片试验和腐蚀形貌分析显示,TA1钛材和316L不锈钢在掺混水中不发生均匀腐蚀,且不产生点蚀,海水循环冷却系统引入再生脱硫废水对系统的腐蚀控制影响甚微,不需要专门投加缓蚀剂对系统进行腐蚀控制。
(4)模拟蒸发浓缩试验显示,引入再生脱硫废水后不会对浓海水制盐过程产生影响,且其制得的结晶盐化学组成符合GB/T 5462—2003中日晒工业盐一级品的标准。
特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
凡来源注明北极星*网的内容为北极星原创,转载需获授权。
1.招标条件本招标项目名称为:国电电力锦界公司二期脱硫废水零排放改造公开招标,项目招标编号为:CEZB250003051,招标人为国能锦界能源有限责任公司,项目单位为:国能锦界能源有限责任公司,资金来源为自筹。招标代理机构为国家能源集团国际工程咨询有限公司。本项目已具备招标条件,现对该项目进行
4月7日,国电电力锦界公司二期脱硫废水零排放改造公开招标项目招标公告发布。详情如下:国电电力锦界公司二期脱硫废水零排放改造公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:国电电力锦界公司二期脱硫废水零排放改造公开招标,项目招标编号为:CEZB250003051,招标人为国能锦界能
4月2日,长安益阳发电有限公司一、二期脱硫废水零排放改造招标公告发布。详情如下:长安益阳发电有限公司一、二期脱硫废水零排放改造招标公告(招标编号:0866-25C1SXQY0208)项目所在地区:湖南省,益阳市一、招标条件本招标项目长安益阳发电有限公司一、二期脱硫废水零排放改造已由项目审批/核准/备案
中煤新集能源股份有限公司滁州电厂2×660MW超超临界机组新建工程启动锅炉及脱硫废水零排放系统配套设施建筑安装工程项目项目公告项目编号:CCTC20250711招标方式:公开招标开标时间:2025年04月22日16时00分1.招标条件本招标项目中煤新集能源股份有限公司滁州电厂2×660MW超超临界机组新建工程启动锅炉
日前,国能新疆电力博州新能源公司2×660MW煤电工程脱硫废水零排放EPC公开招标中标候选人公示。第一中标候选人:成都锐思环保技术股份有限公司,投标报价:2588万元;第二中标候选人:江苏京源环保股份有限公司,投标报价:3050万元。
新疆电力博州新能源公司2×660MW煤电工程脱硫废水零排放EPC公开招标中标候选人公示第一中标候选人:成都锐思环保技术股份有限公司,投标报价:2588.000000万元。第二中标候选人:江苏京源环保股份有限公司,投标报价:3050.000000万元。
3月25日,中国华能发布华能华中分公司应城热电脱硫废水零排放改造EPC招标公告。详情如下:华能华中分公司应城热电脱硫废水零排放改造EPC招标招标公告(招标编号:HNZB2025-03-1-282)项目所在地区:湖北省1.招标条件本华能华中分公司应城热电脱硫废水零排放改造EPC招标已由项目审批机关批准,项目资金为
3月21日,华电集团发布喀什华电2×66万千瓦热电联产项目工程脱硫废水零排放系统EPC批次中标结果公示,上海电气电站环保工程有限公司中标该项目脱硫废水零排放系统EPC,投标报价:3098万元。
科环集团国能水务南京分公司国能神福石狮2×1050MW机组脱硫废水热法零排放改造EPC项目建安工程公开招标项目中标候选人公示第一中标候选人:中国电建集团福建工程有限公司,投标报价:1821.810551万元。第二中标候选人:山东省显通安装有限公司,投标报价:1950.079730万元。
3月18日,重庆公司万州电厂脱硫废水零排放改造项目EPC总承包公开招标项目招标公告发布。详情如下:重庆公司万州电厂脱硫废水零排放改造项目EPC总承包公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:重庆公司万州电厂脱硫废水零排放改造项目EPC总承包公开招标,项目招标编号为:CEZB25
日前,国能黑龙江公司哈热公司二期2×660MW热电联产扩建项目脱硫废水零排放项目EPC总承包工程公开招标项目招标公告发布。详情如下:黑龙江公司哈热公司二期2×660MW热电联产扩建项目脱硫废水零排放项目EPC总承包工程公开招标项目招标公告第一章公开招标1.招标条件本招标项目名称为:黑龙江公司哈热公司
位于宁波石化开发区的浙能镇电燃机搬迁改造项目稳定运行后,3月31日23时58分,随着浙江省调度指挥中心下达9F11号机组关停指令,浙能镇海发电公司(原镇海发电厂)在虹桥村厂区的最后一套发电机组退役。该厂区从1978年首台机组投产至今累计发电2188.06亿千瓦时,曾为助力浙江省经济发展作出重要贡献。此
芬兰政府4月1日宣布,随着该国两家能源公司逐步关停所有燃煤电厂,今年春季芬兰将全面停止在能源生产中使用煤炭。芬兰政府发布公报说,此举是芬兰能源转型的关键一步,比法定期限提前了4年。基于化石燃料的能源生产今后将被低碳、清洁、可再生的方案替代,芬兰将迎来更加稳定、可持续和气候友好的能源
中国电煤采购价格指数(CECI)编制办公室发布的《CECI指数分析周报》(2025年第12期)显示,CECI沿海指数中高热值煤种现货成交价格继续下降。曹妃甸指数前降后稳,低热值煤种期末小幅探涨。进口指数低热值煤种现货成交价下行。CECI采购经理人指数连续12期处于收缩区间,分项指数中,除库存分指数处于扩
3月17日,浙江公司宁海电厂万吨级吸附法碳捕集装置完成了连续72小时第三方性能考核,在二氧化碳捕集率大于80%、二氧化碳产品气纯度大于95%的条件下,平均捕集能耗为331千瓦时/吨二氧化碳,初步展现出吸附法碳捕集技术的低能耗优势。浙江公司宁海电厂牵头承担的“吸附法碳捕集关键技术开发及万吨级示范
根据CarbonBrief的最新分析,2024年英国的温室气体排放量下降了3.6%,煤炭使用量降至1666年伦敦大火以来的最低水平。英国最后一个燃煤电厂——诺丁汉郡的拉特克利夫燃煤电厂(Ratcliffe-on-Soar)关闭,以及威尔士塔尔博特港钢铁厂(PortTalbotsteelworks)的最后一个高炉关闭,是排放量下降的主要因素
北极星电力网获悉,3月11日,新集能源发布投资者关系活动记录表,披露电力装机容量及在建3座燃煤电厂投产时间。电力装机容量公司控股板集电厂(一期2×100万千瓦、二期2×66万千瓦)、上饶电厂(2×100万千瓦)、滁州电厂(2×66万千瓦)、六安电厂(2×66万千瓦),全资新集一电厂、新集二电厂两个低
2月25日,中国能建建筑集团承建的华能陇东能源基地百万吨级二氧化碳捕集利用与封存研究及示范项目DCS机柜受电完成。该项目位于甘肃省庆阳市华能陇东能源基地,依托基地正宁2×1000兆瓦调峰煤电工程建设,采用燃烧后化学吸收二氧化碳捕集工艺路线,年捕集二氧化碳150万吨,捕集率大于90%,二氧化碳纯度
据美国能源信息署的评估,美国将在2025年退役12.3吉瓦(GW)的发电能力,与2024年相比,退役量增加了65%。2024年美国电网退役了7.5吉瓦的发电能力,这是自2011年以来退役发电能力最少的一年。计划退役的发电能力中,煤炭发电能力占最大比例(66%),其次是天然气(21%)。(来源:国际能源小数据作者:
2月8日,浙江省生态环境厅印发《燃煤电厂大气污染物排放标准(征求意见稿)》。详情如下:浙江省生态环境厅关于公开征求地方标准《燃煤电厂大气污染物排放标准(征求意见稿)》意见的通知为完善燃煤电厂大气污染物的排放管控要求,助力深入打好蓝天保卫战,以高水平保护支撑高质量发展,我厅组织对我省
为进一步加强煤电节能减排监管,根据《节约能源法》《大气污染防治法》以及能源监管统计报表制度等相关规定和要求,福建能源监管办汇总统计了2024年福建省统调燃煤电厂节能减排信息,现予公布。一、总体情况2024年,福建省统调燃煤电厂加权(下同)平均供电标准煤耗295.93g/kWh,同比降低0.01g/kWh,平
2024年12月30日,全国首个基于大型燃煤电厂的有机朗肯循环(ORC)低温余热发电中试平台在国家电投重庆公司开州发电公司投运。该中试平台由重庆公司绿动能源公司与上海成套院、湘电动力等系统内外单位联合研发建设,以开州发电公司汽包连续排污水为热源,集合高效磁悬浮、一体式高速永磁向心透平发电机
请使用微信扫一扫
关注公众号完成登录
姓名: | |
性别: | |
出生日期: | |
邮箱: | |
所在地区: | |
行业类别: | |
工作经验: | |
学历: | |
公司名称: | |
任职岗位: |
我们将会第一时间为您推送相关内容!